mwﬁsnm“w

conGraphics

i

Si

g
s
:
s
3
b

High Performance

Integer & Floating Point

Applicable to the spectrum
of computi ng problems

Latency-Tolerant
Architecture

cen be realized on
non-optimized codes

~ High Frequency Single

Chip Implementation

Low cost
High volume

High Bandwidth
Memory Interface

- SiliconGraphics
f' Lomputer Systems

Processor Subsystem - [F=

R1000O RISC CPU Board

R1 0000

3 2 GBIs f interleaved
' Non~blockmg

!
|

R10000

3.2 GB/s “interleaved
- - Non~blocking

Processor

(1-9 Boards)

. Cache. . .
32GBI5 interleaved’ I
!

..Cache. .

Processor
f i
32GBIS . Interleaved |
R10000 -1 Non-blocking !

Processor | cache

. Non-hlogking
Cache

Powerpath 2 System Bus
1.2GB/s Bandwidth
256-bit wide data bus
40-bit wide address bus

Memory Subsystem
(1-8 Boards) Interleaved Memory Board

64 MB-16 GB I

Split read transactions

Prioritized requests

I/0 Subsystem

(1-4 Boards) /O Board

POWEI-'-!channeI—ZTIVI

4 Serial 1 2

Native
HiO

Native
HIO VME

Ethernet | SCSI-2

1 Parallel

SiliconGraphics
=~ Lomputer Systems

Superscalar Architecture ‘High Performance Cache
e Four instruction/cycle 1MB L2 cache
e 2 integer + 2 floating pt. Dedicated 3.2GB cache bus
+ 1 load/store unit Interleaved cache access
Non-blocking cache

Out-of-Order
Execution Branch Prediction

e 3 instruction queues e Speculative execution

e Up to 32 instructions in e Up to 4 outstanding branch
progress simultaneously predictions

e 64 physical 64-bit registers
with renaming

vy wmeunraraDRCS
- Lomputer Systems

e 2-36 R10000 CPUs
e 1 MB Secondary Cache Per CPU
e Over 14 Peak GFLOPS

e 1.2 GB/sec System Bus

* 64 MB - 16 GB RAM, 1, 2, 4, or 8-way interleaved
e 2 GB - 68.8 GB Disk (8.2 TB External RAID)*

e Optional Viz Console

*assumes 4.3 GB disk drives

f
. x"{ ’ agn hd
.7 SiliconGraphics

S
1o Computer Systems

Background Information

/_eak

/ Cache(s) \ |

Main Memory

/ Virtual Memory \

Modern RISC systems use a hierarchy
of memory systems, which tradeoff -
cost vs. speed vs. size.

. In order to acHieve the best possible

level of performance, one must
maximize the level of data reuse.

Most RISC systems can perform at
most one memory operation (load/
store) per floating point instruction,
without a loss of performance.

The Cray C90 can perform three
memory operations (two loads and

one store) per chained pair of multiply
and add instructions.

Why do Machines have Memory Hierarchies?

To optimize price—performance given the widening
gap between CPU and memory performance.

To exploit increased density of microprocessor
technology by integrating memory onto the chip.

PowerLearn Chapter 1: MIPS R8000/10000 Processor & Cache Architecture 1-

The Cache Design Approach

Use fast/expensive SRAM or on—chip real—estate
to implement small caches with high bandwidth
and low latency access.

Use slower/inexpensive DRAM to implement large
main memory with lower bandwidth and higher
latencies for access.

Transfer data or instructions on demand into cache.
Retain in cache until the space is needed for
newly—demanded data/instructions.

Analogous to virtual memory and demand paging

between RAM and disk, but implemented in
hardware rather than the operating system.

PowerLearn Chapter 1: MIPS R8000/10000 Processor & Cache Architecture 1-10

When are Caches most Effective?

When programs exhibit data/instruction locality.

e Temporallocality: If data/instructions are
referenced, they will be referenced again

soon.

e Spatiallocality: If data/instructions are
referenced, nearby data/instructions will be
referenced soon.

Many programs contain extensive locality, and
automatic compiler optimizations or manual
algorithmic improvements can increase locality
and cache effectiveness.

PowerLearn Chapter 1: MIPS R8000/10000 Processor & Cache Architecture

1-11

Step 1:
Step 2:

Step 3:

Step 4:

Step 5:

Power Challenge Tuning

Get the right answers

Use existing tuned code
libfastm
libcomplib.sgimath

Get the loops to Software Pipeline
Use prof to identify important loops

Compile -O3

Read the compiler <swp> messages
Register blocking/outer loop unrolling
IU-FPU latency

Inlining

Loop splitting

Compiler options

C loops

Live dangerously
—-OPT:roundoff=3
~OPT:|EEE_arithmetic=3
-TENV:X=4
—~GCM....speculation
Arithmetic reassociation

Modify code for better cache utilization

Use pixie to identify problem areas
Exploit locality

Cache thrashing and array padding
Loop fusion

Blocking

" PowerLearn Chapter 3: Single Processor Tuning

Get the Right Answers

Many codes will port with a simple recompilation

Try porting to ~02 —mips4

Sometimes they don’t
64-bit processor & OS
longs & pointers are 64 bits
ints are still 32 bits
Another vendor’s libraries

Standards violations
—static -O0 may forgive some in FORTRAN

Mistakes

PowerLearn Chapter 3: Single Processor Tuning 3-3

Use prof to Know Where to Tune

PC-sampling profiling:
Program counter location recorded every 10ms

Provides sorted list of time spent in each subroutine,
line level profiling options

Works on MP programs, too

Times reported reflect true runtime of program
Cache misses
Bank conflicts
Load imbalance

No need to recompile, just re—link

1d -p -o program ...
cCcC -p -0 program ...
£77 -p -o program ...

o0 0@ oo

program (creates mon.out)

o0

oo

prof [-heavy -lines] program

PowerLearn Chapter 3: Single Processor Tuning 3-4

prof Output

Profile listing generated Thu Dec 1 11:13:23 1994

with: prof adi2.p
samples time CPU FPU Clock N-cpu S-interval Countsize
1196 12s RB0O00 RB010 75.0MHz 0 10.0ms O (bytes)

Each sample covers 4 bytes for every 10.0ms (0.08% of 11.9600sec)

-pl(rocedures] using pc-sampling.
Sorted in descending order by the number of samples in each procedure.
Unexecuted procedures are excluded.

samples time (%) cum time (%) procedure (file)

833 8.3s(69.6) 8.3s(69.6) ZSWEEP (adi2.p:.../adi2.f)

108 1.1s(9.0) 9.4s(78.7) YSWEEP (adi2.p:.../adi2.f)

101 1s(8.4) 10s{ 87.1) XSWEEP (adi2.p:.../adi2.f)

49 0.49s(4.1) 11s(91.2) irand_ (/usr/l1ib64/libftn.so:.../rand_.c)
46 0.46s{(13.8) 11s(95.1) ADI (adi2.p:.../adi2.f)

40 0.4s(3.3) 12s(98.4) rand_ (/usr/1ibé4/libftn.so:.../rand_.c)
14 0.14s(1.2) 12s(99.6) ADI.PREGION1 (adi2.p:.../adi2.f)
2 0.02s(0.2) 12s(99.7) ADI.PREGIONO (adi2.p:.../adi2.f)
1 0.01s(0.1) 12s(99.8) _syssgi (/usr/lib64/libc.so.1:.../syssqgi.s)
1 0.01s(0.1) 12s(99.9) t_delete (/usr/1ib64/libc.so.1:.../malloc.c)
1 0.01s(0.1) 12s(100.0) _sigprocmask (/usr/lib64/1libc.so.l:.../possig.s)

1196 12s(100.0) 12s(100.0) TOTAL

Use Existing Tuned Code

libfastm
sin, cos, tan, pow, exp, log, cis
Big performance gain traded for slightly less accuracy

£77 -o prog prog.o -lfastm [-1m]
libcomplib.sgimath

Versions for —mips1, -mips2, -mips3, —mips4

BLAS Levels 1, 2 and 3
EISPACK (Not tuned)
LINPACK (Not tuned)
LAPACK

FFTs & Convolutions
SLATEC (Not tuned)

£77 -o prog prog.o -lcomplib.sgimath

£77 -mp -o prog prog.o -lcomplib_mp.sgimath

Register Blocking

Outer Loop Unrolling: reduces loads of a by nb

subroutine mml(a,lda,b,1ldb,c,ldc,m,1l,n)
integer 1lda, 1ldb, ldc, m, n
real*8 a(lda,l), b(ldb,n), c(ldc,n)

C
do j =1, n, nb
do k=1, 1
do 1 =1, m
c(i,j+0) = ¢c(i,3+0) - a(i,k)*b(k,j+0)
c(i,j+1) = c(i,3j+1) - a(i,k)*b(k,j+1)
c(i,j+nb-1) = c(i,j+nb-1) - a(i,k)*b(k,j+nb-1)
enddo
enddo
enddo
c
return
end

Middle Loop Unrolling: reduces Id/st of c by Ib

subroutine mm2(a, lda,b,1ldb.c,ldc,m,1l,n)
integer lda, 1db, 1ldc, m, n
real*8 a(lda,l), b(ldb,n), c(ldc,n)

c
do j =1, n
do k=1, 1, 1b
do i=1, m
c(i,j) = ¢c(i,j) - a(i,k+0)*b(k+0,7)
c(i,j) =

c(i,j) - a(i,k+1)*b(k+1,])

Y -\ I L) -\ Y L Te ¢ T 1Y % 71 1 La 1 AR

Play into Known Optimizations

Use reciprocal-square-root (with ~OPT:IEEE_arithmetic=3)

P2 = X*xX / vy
p = sgrt(p2)

should instead be written as:

= ab

o) s(x) * (1.0 / sgrt(y))
P2 = pP*p

Split transcendental functions into vector—style loops

do i=1,n
compute x(1)
enddo

do i=1,n

y(i) = exp(x(1))
enddo

do 1i=1,n
use v (i)
enddo

because
(1) non-transcendental loops will SWP, and
(2) with upcoming compiler, vector intrinsics will be used.

PowerLearn Chapter 3: Single Processor Tuning 3-17

Loop Splitting

do i=lfc,1llt
x17(1)=x7 (1)-x1 (1)
x28(1)=xS8(i)-x2(1)
x35(1)=x3(1i)-x3 (1)
x46(i)=xS(1i)-x4 (1)
y17(i)=y7 (1) -y1l(1)
y28 (i) =v8(i)-y2 (1)
y3S(1)=yS(i)-y3 (1)
y46 (1) =yS(i)-y4 (1)
z1l7(1)==7(1i)-2z1(1)
z28(1i)=z8(1i)-z2 (1)
z35(1)=z3(i)-z3 (1)
z45(i)=z=2(1)-z4 (1)
ajl(i)=x27(1)+x28(1)-x35(i)-x45 (1)
aj2(i)=yl7(1)+y28(1i)-y3S(i)-y46 (i)
aj3(i)=z17(1)+z28(1i)-z35(i)-z46(3i)
al7(1i)=x17(1)+x46 (1)
a28(1)=x28(i)+x35(1i)
b17(1)=y17(1i)+y46(1i)
b28(1)=v28(1)+y35(1)
Ccl7(i)=z17(i)+z46(1i)
c28(i)=z28(1)+z35(1)
ajé(i)=217(1i)+a28(1)
aj3(i)=ci7(i)+b28(1i)
aje(i)=cl7(i)+c28(1i)
aj7(i)=al7(i)-a28(1i)
aj8(i)=zl17(i)~b28 (1)
ajo9(i)=cl7(i)-c28(1i)

enddo

return

end

grep stf foo.s:

#<swpf> Loop line 44 wasn’t pipelined due to register
allocation blues.

#<swpf>

PowerLeam Chapter 3: Single Processor Tuning

Loop Splitting

(continued)

do i=1lfc,1llc
x17(1)=x7(1)-x1(i)
x28(1)=x8(1i)-x2 (1)
x35(1)=x3(1)-x3 (1)
x46(1)=x6(1)-x4 (i)
v17(1i)=y7 (i) -y1(1)
y28 (1) =y8(1i)-y2(1i)
y35(1)=yS(i)-y3 (1)
v46 (1) =ys(i)-y4 (1)
217 (1) =z7(1)-2z1 (1)
228 (1)=28(1)-z2(1i)
z35(1)=2z3(1)- 23()
z48 (1) =z5(1)-z4 (1)

endco

de i=1fc,1llt
ajl(i)=xi7(i)+x28(i)-x35(1i)-x46(1i)
aj2(i)= jl7(1)+y28(’)—y35(1)-y4o(1)
aj3(i)=z17(1)+2z28(i)=-235(1i)-246(1i)

al7(1)=x17(1)+x46(1i)
a28(1)=x28(1)+x35(1i)
b1l7(1)=yl7(1)+y46 (i)
b28(i)=y28(i)+y35(1)
cl7(1i)=z17(1i)+z46(1i
c28(1)=z28(1)+z35(i

endco

do i=1ft,1llt
aj4(i)=al7(i)+a28 (i)
ajs(1)=bl7(i)+b28 (1)
aj6(i)=cl7(i)+c28(1i)
aj7(i)=al7(i)-a28 (i)
aj8(i)=bl7(i)-b28 (i)
a39(1)-c17(1)-c28(1)

enddo -

raturn
end

PowerLeamn Chapter 3: Single Processor Tuning

C Loops

Pointers limit dependency analysis
Array notation shows independence

Use scalar loop indices:
for (i=0; i<(*pn); i++) {

}

may not software pipeline, whereas

for (i=0; i<n; i++) {

}

may.

—OPT:alias=name

Specify the pointer aliasing model to be used. If name

is any, then the compiler will assume that any two

memory references may be aliased unless it can determine
otherwise (the default). If name is typed , the ANSI
rules for object reference types (Section 3.3) are

assumed — essentially, pointers of distinct base types

are assumed to point to distinct, non—overlapping

objects. If name is unnamed, pointers are also assumed
never to point to named objects. Finally, if name is restrict ,
distinct pointers are assumed to point to distinct, non—overlapping
objects. This option is unsafe, and may cause existing C
programs to fail in obscure ways, so it should be used

with extreme care.

PowerLearn Chapter 3: Single Processor Tuning

Live Dangerously

—OPT:IEEE_arithmetic=n

Specify the level of conformance to IEEE 754 floating point
arithmetic roundoff and overflow behavior. At level 1 (the
default), do no optimizations which produce less accurate
results than required by IEEE 754. At level 2, allow the use of
operations which may produce less accurate inexact results (but
accurate exact results) on the target hardware. Examples are
the recip and rsqgrt operators for a MIPS IV target. At level 3,
allow arbitrary mathematically valid transformations, even if
they may produce inaccurate results for IEEE 754 specified
operations, or may overflow or underflow for a valid operand
range. An example is the conversion of x/y to x*recip(y) for
MIPS IV targets. See also roundoff below.

—-OPT:roundoff=n

Specify the level of acceptable departure from source language
floating point roundoff and overflow semantics. At level 0 (the
default at optimization levels -00 to -02), do no optimizations
which might affect the floating point behavior. At level 1,
allow simple transformations which might cause limited roundoff
or overflow differences (compounding such transformations could
have more extensive effects). At level 2 (the default at
optimization level -03), allow more extensive transformations,
such as the execution of reduction loop iterations in a
different order. At level 3, any mathematically valid
transformation is enabled. Best performance in conjunction with
software pipelining normally requires level 2 or above, since
reassociation is required for many transformations to break
recurrences in loops. See also IEEE_arithmetic above.

PowerLearn Chapter 3: Single Processor Tuning

W
|

30

Use pixie to Identify Cache Problems

Basic—block counting profiling:

Counts the number of cycles the program executes
without accounting for cache misses, bank conflicts

Provides sorted list of time spent in each subroutine
Works on MP programs, too

Comparison with prof output shows where time is
being spent in memory operations

No need to recompile or re—link, just run pixie
(program cannot be linked —p)

oP

pixie program (generates program.Addrs
and program.pixie)

setenv LD_LIBRARY_ PATH .

program.pixie (generates program.Counts)

prof -pixie program |

00 of o

PowerLeam Chapter 3: Single Processor Tuning 3-31

pixie Output

Profile listing generated Thu Dec 1 11:18:22 1994

with: prof -pixie adi2
Total cycles Total Time Instructions Cycles/inst Clock Target
200761444 2.677s 253383589 0.792 75.0MHz R800O0

32669082: Total number of Load Instructions executed.

160627148: Total number of bytes loaded by the program.
23709732: Total number of Store Instructions executed.
113646670: Total number of bytes stored by the program.

1065: Total number nops executed in branch delay slot.
15966876: Total number conditional branches executed.
8697925: Total number conditional branches actually taken.
117: Total number conditional branch likely executed.
30: Total number conditional branch likely actually taken.

0: Total cycles waiting for current instr to finish.
175244572: Total cycles lost to satisfy scheduling constraints.
130814226: Total cycles lost waiting for operands be available.

-p[rocedures] using basic-block counts.

* Sorted in descending order by the number of cycles executed in each *
* procedure. Unexecuted procedures are not listed. *
cycles(%) cum % secs instrns calls procedure(file)

.50 44040192 32768 ZSWEEP(adi2:.../adi2.f)
.50 44040192 32768 YSWEEP(adi2:.../adi2.f)
.50 44040192 32768 XSWEEP(adi2:.../adi2.f)
.42 39845888 2097152 rand_(/usr/1ib64/libftn.so:.../rand_.c)
.42 33554432 2097152 irand_(/usr/libé4/libftn.so:.../rand_.c)

37257216 (18.56) 18.56
37257216 (18.56) 37.12
37257216(18.56) 55.67
31457280(15.67) 71.34
31457280(15.67) 87.01

leNeoNoNoNoNoNoNoNoNel
(VS]
=

23134917(11.52) 98.54 . 40027674 128 aADI(adi2:.../adi2.f)
2049202(1.02) 99.56 .03 5982424 1 ADI.PREGIONI1 (adi2:.../adi2.f)
727967(0.36) 99.92 .01 1522211 2 ADI.PREGIONO(adi2:.../adi2.f)
69892(0.03) 99.95 .00 162966 346 _sinitlock(/usr/1lib64/libc.so.1:.../ulocks.c)
26132(0.01) 99.97 .00 43300 352 1lmalloc(/usr/1ibé4/libc.so.l:.../amalloc.c)

Cache Strategies: Maximize Locality

Instead of accessing across rows

doi=1,n
dok=1,n
doj=1,n
c(i,k) = c(i,k) + a(i,j)*b(j,k)
enddo
enddo
enddo

try to access down columns

dok=1,n
doj=1,n
doi=1,n
c(i,k) = c(i,k) + a(i,j)*b(j,k)
enddo
enddo
enddo

For C, the opposite order is appropriate

for (I=0; i<n; i++) {
for (j=0; j<n; j++) {
for (k=0; k<n; k++) {
c[i][k] += a[i]iI*bOlIk];

PowerLearn Chapter 3: Single Processor Tuning

Cache Thrashing
and Array Padding

Conflicting arrays can cause severe thrashing in
caches, especially direct—-mapped.

program copy
Implicit double precision (a—h, 0-2)

pearameter (max=1024*1024)
real*4 t(2), dtime

— geommon /a/ a(max), b(max)

tm = dtime(t)

doi=1, max

en%(:?.; o0 Padding between arrays

tm = dtime(t) or changing declared length

avoids the mapping conflict
write(6,1) tm
1 format(1x,'Time =",f5.3,” seconds’)
end

Because arrays are an exact multiple of cache size and are
forced back—to—-back in COMMON, corresponding array
elements map into the same cache location.

With Power Challenge’s associative caches,
severe thrashing does not occur in this example

With the 2-way or 4-way set associative caches,
up to 2 or 4 such conflicting references can be
in cache together.

PowerLearn Chapter 3: Single Processor Tuning 3-24

Cache Blocking

If an array doesn't fit entirely in the cache,
try to block it into pieces that do:

Example: Matrix multiply

Matrix transpose is another operation that must
be cache-blocked for good efficiency.

PowerLearn Chapter 3: Single Processor Tuning

n Memory Bandwidth

* Unrolling of loops may demonstrate the potential for data

reuse. DO 10, = 1,IMAX
Dg N S AN B(l)
10 CON‘anE ,’

« Combining loops may uncover the potential for data reuse.

D/?(I) 10){('= 1,Igﬁ(/8X
= +
10 CONTINUg

DO 20, =1,IMAX

20 Cg(h?TTN%@ Bk

* Unrolling of loops may allow one to eliminate unnecessary or
duplicate instructions resulting from prior vector optimizations.

4.

Summary of Uniprocessor Tuning Techniques

Get to top optimization level: —O3 —mips4
Use fast libraries: —Ifastm —lcomplib.sgimath

Allow optimizations that affect roundoff or
the last bit of precision:
—OPT:roundoff=3:IEEE_arithmetic=3

Try getting improved SWP code by examining
"love letters" in listing files and trying for
lower cycle counts with:

e jvdep directive/pragma
e inlining
e outer loop unrolling, ...

Make code as cache-friendly as possible:

e Stride—1 inner loops
e Fuse loops to get vector reuse, if necessary

e Nest loops to access multidimensional arrays contiguously,

Inner—to—outer loops traverse leftmost—to—-rightmost

indices (FORTRAN) or rightmost—-to—leftmost indices (C)
e Pad power—of-2 dimensions to alleviate cache—thrashing

e Block large matrix operations for cache

PowerLearn Chapter 3: Single Processor Tuning

